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ABSTRACT 

It is shown that the inverse scattering transform used to solve the classical 

nonlinear Schradinger equation may be formulated as an operator method for 

solving the corresponding quantum field theory (delta-function many-body 

problem). 
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Much of the recent progress in quantum field theory has evolved from the 

study of non-trivial solutions to classical field equations. In general it is a difficult 

problem to determine the precise quantum mechanical implications of such 

classical solutions, even when the latter are known exactly, and in most cases of 

interest, results must be based on semiclassical approximation techniques. To 

provide a base of experience in these matters, it is of interest to study a class of 

two-dimensional models for which the connection between classical and quantum 

phenomena may be analyzed by exact methods. These are the models whose 

classical field equations may be solved by the inverse scattering transform @ST) 

method.1 In this paper we consider’the simplest of these models, which in its 

classical form is known as the non-linear Schrodinger equation 

ia,+ = - a,2++2c I$[z$ (1) 

where $I is a complex scalar field and c is a constant, which in this paper we shall 

take to be positive. If we define the Poisson bracket of any two functionals cr and 

B =s 

Ia, = ildx & 6z - & $&J 9 (2) 

then equation (1) may be written in Hamiltonian form aoo = {H, C$ } with the 

Hamiltonian H given by 

H = i dx Ia,4*a,a +c /@I2 1 (3) 
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This classical theory is completely soluble by the IST method and possesses an 

infinite number of conserved quantities whose densities are polynomials in the 

fields Q, and $* and their space derivatives.3’4 

The quantum version of the theory is obtained by normal ordering the 

Hamiltonian (placing all @*Is to the left of all c$‘s) 

H = i dxIa,+*al++ca*4*441 

and considering $I and < to have canonical commutation relations 

[ @(xl, +*+(Y)l = Sk-Y) 

(4) 

(5) 

This non-relativistic field theory is equivalent to the &-function gas and the 

Hamiltonian is known to be explicitly diagonalized by Bethe ansatz wave 

functions.5-10 

The purpose of this work is to make precise the connection between the 

solubility of the classical and quantum versions of the theory. Some progress in 

this direction was made by one of us in a previous paper, 1’ where it was suggested 

that the Bethe eigenstates of the quantum theory were also eigenstates of suitably 

ordered counterparts of all the polynomial conservation laws of the classical - 

theory. This was explicitly verified for the first four conserved quantities. 

However an attempt to prove this result in general reveals that, due to short 

distance singularities, the higher order conservation laws are not unambiguously 

defined in the quantum theory without a cutoff prescription, and we were led 

instead to the considerations of this paper. 

We shall first introduce the classical method of Zakharov and Shabat3 and 

Zakharov and Manakov 4 in a language appropriate to the quantum version of the 

theory. This classical method is based on a mapping between the field 
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configuration Q(x) at a given time and a set of scattering data associated with the 

Zakharov-Shabat eigenvalue problem 

( .a 1 
1s +25 

1 
Y1 = - /FY, Q 

( i& -j!< 
) Y2=JF$lXY1 . 

(6a) 

(6b) 

For the classical theory the ordering of the factors on the right-hand side of (6) is 

immaterial. However as we shall show in this paper, the eigenfunctions Y, and Y2 

of the linear problem (6) may also be considered as operators of the quantum theory 

and in this case it is easy to see that the particular ordering in (6) leads to normal 

ordering of Yl and YZ. 

We will discuss in particular the operator Jost function $(x, 5) defined as the 

solution of (6) with boundary condition 

44x, 5) - .iSx/z 
I 

X-+-m ( ) 0 

It is convenient to write 

Ql(x, 5) = e”“‘A(x, 5) 

$J~(x, 5) = - i Ke-iSXf2 B(x, 5) 

and define the scattering data 

(7) 

(8) 
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&) = lim A(x,c) 
IX+- 

, (9a) 

b(c) = lim B(x, 5 ) 
x-L- 

(9b) 

Both the Jest function $(x, 5) and the operator a(<) are analytic in the lower half 

5 -plane. From equations (6) and (7) the operators A and B satisfy a pair of coupled 

integral equations 

A(% 5) = 1 + c I dxdy e(y < x)emiSyB(y, c)@(y) (10a) 

Nx, 5) = I dy e(y < x)eiSy$*(y)A(y, 5) (lob) 

where e(y < x) f ‘J(x - y) is a step function. By iterating equations (IO), one may 

generate series expansions for A and B, and for the scattering data operators a and 

b, in terms of the canonical fields @ and @*. Recalling that normal ordering in this 

model simply means grouping all @*Is to the left and all $3 to the right in each 

term, it is easily seen from (10) that the expressions obtained are normal ordered. 

The series expansions for a( 5) and b( 5) are 

a([) = 1 + c I dx,dy,e(x, < yl)eiS(X1-Y1)~*(~,)~~l) 

+ Cz i dxldx2dyldy2B (xl < y, < x2 < y2)e 
iS(xl+xz-yl-y2) + 

@ (xI)~*(x*~(Y,MY*) 

f... (1 la) 
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b(c) = j dxle 
iSxl 

p*Lq 

+ c j dxldx2dyl 8(x1 < yl< x2)e 
iC(xl+x2-Y1) + 

$ (x,)L$*(x,)f$(Y,) 

+ . . . (Ilb) 

with an obvious notation for multiple step functions. 

Before considering the quantities (II) as quantum operators we will collect 

here for comparison some of the results of the classical analysis of Zakharov and 

Manakov. In this paragraph only, a(c) and b(c) will be regarded as classical c- 

number quantities. By writing both a(c) and b(c) as a Wronskian of two solutions of 

the classical version of (6), one may compute the variational derivatives needed to 

evaluate the Poisson brackets defined in (2). In this way Zakharov and Manakov 

obtained 

b(5), b@‘) } = a(5 )b( 5’) 

{a*(<), b(<‘) } = - <- k, + i,) a*(g)b(C’) 

i a(<), a(59 } = I a(S), a*(S’) } = 0 

{b(c), b(C’) } = 0 

{b(S), b*(U 1 = 2ai a*K)a(C)G(S - 5’) 

(12) 

(13) 

(14) 

(15) 

(16) 
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In addition, by transforming to action and angle variables it may be shown that a($ 

and b(c) have simple Poisson brackets with the Hamiltonian 

{ H, a(S) } = 0 (171 

{H, b(S) } = i c2b(C,) (18) 

Equations (171 and (18) are the fundamental results of the classical theory. They 

show that the time evolution of the scattering data is extremely simple. The 

solution to the classical initial value problem is completed by using the Gelfand- 

Levitan equation to recover the fields I$ and o* at a later time from the scattering 

data. 

We begin our consideration of the quantum theory by deriving the commu- 

tator of the normal ordered Hamiltonian (4) with the operators a(S) and b(S) in (I 11. 

It is useful to note that all the Poisson bracket relations (12)-(18) may be explicitly 

verified order by order, using the series expansions of the various quantities; the 

transition to the quantum theory is accomplished by paying careful attention to the 

ordering. The crucial observation here is that the spatial ordering of the 

integration variables (due to the multiple step functions) in (11) leads to a great 

simplification in the problem of re-ordering operator expressions. For a generic 

term in (Ila) or (lib) a field $I * at the point xi will have a non-vanishing 

commutator only with the fields 9 at yi-, and yi. Similarly a field 4 at yi has a 

non-vanishing commutator only with the fields a* at xi and x. ,+l. To compute the 

commutators of a(C) and b(S) with the Hamiltonian we simply commute H with 

each term in the series (Ilal or (Ilb) in turn, and note that the result in each case 
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may be brought to normal ordered form without encountering any non-zero 

commutators. Thus the calculation of the commutator of H with a(c) or b(E) is 

identical in structure to the calculation of the corresponding Poisson bracket, and 

it leads to similar results: 

[ H,a(Ol = 0 

[H, b(S) 1 = C2M 5) (20) 

Equation (20) shows that eigenstates of H may be constructed by repeated 

application of the operator b to the vacuum state IO>. Here 10 > is the state with 

no particles defined by C$X) 10 > = 0. Thus we are led to consider the states 
2 

1 kl...k,> : b(kl)...b(k,) 1 O> 

with the property 

H /kL...k, > = ( ii, ki2) I kl***kn ’ * 

(21) 

These states have definite particle number n and for n ‘3 we have verified 

explicitly that they are identical to the known n-particle Bethe wave functions 

given by 

ft dxie 
ikixi 

i=l II 
1-A E(Xi - xj) $ *(xl)...~*(xn) 10 > , (23) 

1 I 

a result which we believe to hold for all n. 
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The result (19) shows that a(<) and H may be diagonalized together and 

suggests the possibility that a(<) is already diagonal on the states 1 k,...k,>. This is 

verified by the calculations of the Appendix, where it is shown that the operators a 

and b satisfy the following commutation relations among themselves 

1 a(C), MS’) 1 
ic = - 5 _ 5, _ i E b(C’)a(S) 

[a*(C), b(C’)l = + 
ic 

5 _ 5 t + iE b(S ‘MO 

(24) 

(25) 

[a(S), dC9 1 = [ a([), a*(<‘)] = 0 (26) 

[b(S), b(S’) 1 = 0 (27) 

From (24)-(26) we see that all the a(<), a*(<) commute, and are simultaneously 

diagonalized by the states (21) with 

a(S) 1 kl...k, > = ic 
5 - ki - ic )I 

1 kl...k,’ , (28) 

a*(<) 1 kl...kn> = ] 1 kl...kn > . (29) 

In addition, the relation (27) shows that the states Ikl...kn> are symmetric in 

kl.,.kn as indeed the Bethe ansatz states (23) are. 

It is interesting to compare the commutators (24)-(27) with the corresponding 

Poisson brackets (12) to (15). We see that they are identical in form, except for the 

fact that the ordering of the two operators on the right-hand side of (24)-(26) must 
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be as shown. On the other hand, the Poisson bracket {b(c), b*(c’) } , Eq. (16), has 

no comparably simple operator analog. It can be shown by explicit calculation from 

the series (Ilb) and its Hermitian conjugate that the commutator [b(c), b*(<‘) ] 

does not vanish even if 5 f $. This illustrates the danger in making any general 

statements about the correspondence between Poisson brackets and commutators. 

Using the results (21) and (27), we can construct another operator of 

particular interest, 

R(c) = b(S)[d<)l-’ (30) 

Classically, the quantity b(<)/a( 0 is just the reflection coefficient for the 

Zakharov-Shabat scattering problem. The operator R(E) can be used to construct 

the normalized in and out scattering states. (Note: the states created by b(c) are 

not properly normalized, as can easily be verified by taking inner products.) If we 

choose the ki variables in a specified order, e.g., 

kl < k2 < a.. < k, 

then we find that 

Jo& 1, . . . . kn)>in = R(kl) . . . R(k,) 10 > 

is a normalized in state, and 

1 ok 1, . . . . kn)>out = R(k,) . . . R(kl) IO> 

(31) 

(32) 

(33) 
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is a normalized out state. These are the states which evolve from free plane waves 

by the unitary Moeller wave operators U(0, em ). They can be written in a form 

like Eq. (23) with the factor in curly brackets replaced by 

;I etxj - xi) + eki - xj)e 
2iA(ki - kj) 

I<j<i<n 
1 - - 

for the in states (32), and by 

II xi)e 
-2iA(ki - kj) 

l<j<i<n 
+ ecxi- Xj) 1 - - 

(34) 

(35) 

for the out states (33). Here A(ki- kj) is the two-body phase shift given by 

2iA(k.-k.) 
e ’ I = 

ki - k. - ic 

ki - kj + ic 
(36) 

The R operators have a very simple commutation relation which illustrates their 

relevance to the two-body scattering process, 

(37) 

Thus, R is an explicit realization of the operators introduced by Zamolod- 

chikov in the S-matrix analysis of certain relativistic theories. 12 Although it is 

nonrelativistic and hence simpler, the nonlinear Schrodinger model is in many 

respects a paradigm for this class of theories which includes the sine-Gordon 

(equivalently massive Thirring) model,13 the O(N) nonlinear sigma model, and the 

Gross-Neveu model. The operator R is also interesting because, in the classical 

theory, it is the reflection coefficient b(C)/a([) which enters as the kernel of the 
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Gelfand-Levitan equation for the inverse problem associated with the eigenvalue 

equation (6). In this paper we have considered the operator analog of the direct 

problem in which the scattering data a(c) and b(c) are expressed as functionals of 

the fields d(x) and O*(x). It is amusing that we have been led in a natural way to 

consider the operator analog of the kernel of the classical inverse problem. This 

suggests that the Gelfand-Levitan analysis (i.e. expressing the field in terms of the 

scattering data) may also have an operator analog. This question together with 

applications of these methods to other theories is presently under investigation. 

We would like to thank Hugh Bergknoff and W.A. Bardeen for many helpful 

discussions. 
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Appendix 

In this Appendix we prove the commutation relations between the operators 

a, a*, b, b* given in (24)-(27). The proof will follow closely the classical Poisson 

bracket derivation of Zakharov and Manokov, but with careful attention paid to the 

ordering of the various operators. We first introduce the definition and properties 

of the normal-ordered operator Jest functions of the eigenvalue equation (6). In 

addition to the operator $(x, 5) with asymptotic behavior 

I 
+* 

1 ) 
.iC xl2 asx+-a 

0 

we shall need the operator solution x(x, 5) with the property 

0 
x(x, 5) s ( ! .-iSx/2 asx++rn 

I 

(Al) 

Like ‘JI, x is analytic in the lower half c-plane. Writing the differential equation (6) 

as an integral equation,we find that the non-vanishing commutators of the Jost 

functions with the elementary fields $, I$* are given by 

[ $,, 4* 1 = LF $2 

iC 
[62’$l = 2aJ1 

ifi 
[Xl’ @* I = .- 2 x2 - 

1x2, $1 = -2 XI (A3) 
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where all the fields are evaluated at the same point x, and we have made the 

symmetric choice 1 13 (x)6(x) = y2. Using the above and the differential equation (6) 

we may then obtain the fundamental relation 

i&($x2’- $2X1’) = %(C’-C)(J11X2’ + J,,x 1’) (A41 

where J, ~$(x, 5) and x’z x(x, 5 ‘I. It is also useful to note that $ andx commute 

[ JI $5 0, Xj(X, 5’) I = 0 (A51 

From I$ and x we may obtain two more normal ordered solutions to the equation (6) 

given by 

JI = 
Q2* ( i %* 

x2* 
x = 

( 1 x1* 
(~6) 

All the results (A3), (A4), (A5) are still valid with I$ replaced by G and/or x replaced 

byi. 

With these definitions and preliminaries we may now prove the following 

theorem: 

Theorem 1 

Let A denote any of the functions a(S’), a*(Cl), b(S’), b*(Q). Then the 

commutator of a(S) with A may be expressed in the form 
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[a@), A I = ifi X&X’ 5) - Jl,(x, 5)-g& x1(x, 5) I 
. (A7) 

Proof 

\4’e first note that the series expansion (lla) for a(S) may be brought to the 

form 
N 

a(<) = lrn cN II 
is xi 

N=O i=l 
dYie 

-jS Yi 
1 0(x1 < y, < x2< y2...< XN < y,) 

*(XI)~*(X2)~(Y1)~*(X3)~(Y2)...~*(XN)~(YN-l)~(YN) 
- , 2 i L 

1 . (~8) 

We see that in this expression the fields are “almost” ordered in the same way as 

their arguments-the only exceptions being the marked pairs which are reversed. 

Considering for example the N = 2 term in this expansion we find 

[ a(2) (&A I E c2 J- 

i<xi -is. 
dxie dYie 'ek, < Yl < x2 < Y,) [ ~*(x,)~*(x2)~(Y,)~Y2), A 1 

= c2 J 
iSx. 

dxie ‘dyie 
-i Syi 

e(x, < y1 < x2 <Y,) 

x { [ $*(x1), Al @*(x,MY@(Y2) 

+ t’*(+$(y,) [ $*(x,),A Itiy,) 

+ $*(x,) I $(y,),A 1 3$*(x,) $4~~) (A91 

+ +*(y) $*(x,)$(~l) [ #Y,), A 1 1 
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where the ordering has been obtained from the naively expected one by noting that 

the quantity 
[ 

1 + *(x2),A 1, @(y,) 1 c + $(y,), [$*(x2), AI 1 vanishes by virtue of 

the Jacobi identity. Re-labelling the integration variables and using 

[ <b*(x), A I = -6A!6$(x) and [41(x), A 1= &A/~@*(X) we see that (A91 is just the term 

of order c2 in the expansion of the right-hand side of the theorem. By treating 

each term in the expansion of a(<) in a similar manner, the theorem is proved. 

We may derive a similar theorem for the operator b(S): 

Theorem 2 

Let A denote either a*(S’) or bg ‘I. Then the commutator of b(S) with A is 

given by 

[ b(5), A I = +,(x, 5) (A101 

Proof 

The proof follows closely that of Theorem 1 except that the restriction on the 

operator A requires comment. The expansion of b(c ) analogous to (A9) is given by 

b(S) = ; 
N=O 

c”[ F;/dxieiCXi] I[ !l/dyie-iCyi] 8(x1 <yI < x2...<xN< yN< xN+$ 

(All) 

The essential new point is that the pairs which are out of order now include the two 

fields whose arguments are furthest to the right, and a careful analysis shows that 

if the field in A whose argument is furthest to the right is I$ (rather than @*) then 

the change of integration variables required to prove the theorem is invalid. 

This condition eliminates a and b* from the allowed choices for A. 
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Similar theorems may be proven for a* and b* but in fact this is not necessary 

since commutators involving a* or b* may be obtained from those involving a or b 

by Hermitian conjugation; Theorems 1 and 2 are sufficient to calculate all 

commutators among a, a*, b, b* except [b(C), by(< To illustrate the method we 

will evaluate [a(S), b(S’) I. Applying Theorem 1 and computing the variational 

derivatives 6b/6$ and 6b/6@* we obtain 

[a(<), b(c’) 1 = id?J dx(619’~2’~l - Q2Q11xl’X2) 

=i6~dx($l~21$221Xl - $2~,‘~l’X2) (A12) 

where $ = Jl(x, 5) and$ ’ =$(x, 5 ‘1, etc., and the second line follows from the first 

by (ASi). Using (A4) we see that the integrand is a total derivative 

- 8 $,x2 $,‘x,- JI,x,‘JI,‘x, = & & [ NJ,&‘- ~&(~,tx~ -+J,‘X,) J * (A13) 

Recalling that a@) is analytic in the lower half plane we may make the 

replacement 5 -+ 5 - i E and evaluate the contribution at infinity to obtain 

[a(S), b(Y) I = - t;-F _ iE b(S’Ja(5) . 

The other commutators, with the exception of Ib(S ), b*(S’)l , may be evaluated in a 

similar manner, and yield the results (24) to (27). Note that the restriction on the 

allowed operators A in Theorem 2 is very important, since if we had erroneously 

used Theorem 2 with A = a to evaluate [ a(C), b( 5’) ] we would have obtained the 

terms on the right-hand side of (A14) in the reverse order. 

(A’4) 
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